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We predict the magnitude of fluctuations of two-dimensional, supercrystal stripe phases of Langmuir mono-
layers, composed of polar molecules, in the low temperature regime. Our model includes both the microscopic
line tension and the interdomain, long-range dipolar interactions. We calculate~in the long wavelength ap-
proximation! the elastic energy of the stripes and show that the stripes exhibit long-range orientational order.
We predict that the stabilization of the stripe width by the dipolar interactions tends to decrease the thermal
roughness of the domain walls compared with systems with only short-range interactions. In the case of
crystalline stripes our results suggest a possible finite-temperature first-order roughening transition.
@S1063-651X~96!13809-5#

PACS number~s!: 68.10.2m, 68.60.Dv, 68.15.1e, 64.70.2p

I. INTRODUCTION

A variety of amphiphile molecules~surfactants, fatty ac-
ids, or lipids! form insoluble monolayers at the water/air in-
terface~Langmuir monolayers!. The phase diagrams of these
systems have been extensively studied and show a wide va-
riety of behaviors~see, for example, Refs.@1–3#! such as the
coexistence of liquid-gas or liquid-expanded–liquid-
condensed phases with very large domains. When the mol-
ecules that form such monolayers carry a permanent electric
dipolar moment, an even richer phase diagram was predicted
theoretically@4–7#. The competition between the short-range
attractions~due to van der Waals interactions! and the long-
range dipolar repulsion favors spatial inhomogeneities of the
in-plane molecular concentration and results in the formation
of various mesoscopic structures including macroscopic
modulated phases such as ordered stripe or bubble phases.
This behavior is also shared by other quasi-two-dimensional
systems with dipolar interactions, such as magnetic thin
films.

In the present work, we study both equilibrium properties
and thermal fluctuations of the domains in the stripe phase,
and predict the orientational ordering and roughening of the
stripes.

We consider monolayers which consist of a single type of
molecule that carries a permanent dipolar moment perpen-
dicular to the flat interface~for the treatment of in-plane
dipoles see, for example, Ref.@8#!. In such systems, the di-
polar interaction between two molecules reduces to
; P2/r 3, wherePW is the dipolar moment of a molecule and
r is the distance between the molecules. We discard effects
arising from internal degrees of freedoms of the molecules,
such as the tilt of the tails@9#, and study a system with
uniaxial modulation of the molecular density in the low-
temperature regime. In this regime, far from the critical tem-
perature for the onset of the modulation, domain walls are
sharp and the resulting supercrystal stripe phase is composed
of two alternating homogeneous stripes 1,2 with dipolar den-
sitiess1 ands2, respectively.

Our results are described in terms of four physical param-
eters: ~i! m2[(s12s2)

2Kd , whereKd;P2 is the dipolar

interaction strength, which is very sensitive to the dielectric
properties of the system@5#; ~ii ! the microscopic cutoffD,
which is approximately the intermolecular distance;~iii ! the
microscopic isotropic line tensiong, that accounts for the
short-range attractions; and~iv! the surface fraction of the
phasesf[f1512f2. Our formal analysis is valid for
0<f<1, but we stress that the variation of the surface frac-
tion f may induce phase transition to other phases~e.g.,
bubble phase, as suggested by Ref.@10#!.

In our review of the well-established equilibrium analysis
of the stripe phase@4,5,11,12# we recalculate the stripe peri-
odicity with a new emphasis on the energy scales of the
system. We find that the self-energy of a minority phase
stripe ~the smaller off1 and f2) is much larger than its
interaction energy with distant stripes. This results in a rela-
tively fixed width of the minority phase stripes, which very
weakly depends on the surface fractionf. We thus find that
the main response of the system to a change in the surface
fraction is to adjust the period of the supercrystal rather than
the width of the stripes. This result is also relevant to the
calculations of the fluctuations in the stripe width, which we
find to be very small on the scale of the stripe width~al-
though it is usually large enough to roughen the domain
walls; see below!.

Fluctuations of the stripe phase were previously consid-
ered in the literature using two main approaches. The first
one is phenomenological and starts from a continuum model
of the displacements of the stripes, which leads to an elastic
Hamiltonian @13–15#. The second one uses exact calcula-
tions for infinite wavelengthcollectivemodes of the stripes
~i.e., all the boundaries of the stripes fluctuate identically!,
mainly for stability analysis of the phase@10,16–18#. In our
work, we bridge the two approaches and calculate~to second
order in the fluctuations! the full fluctuation Hamiltonian of
the stripes, which leads to acoustic and optical branches in
the energy spectrum. Our results for the fluctuation energy
spectrum are similar to those of Ref.@19# for thin magnetic
films, but we also focus on the effects of these modes in
determining the smectic order of the phase and the roughness
of the domain boundaries.

At surface fractionfÞ 1
2 we use a simplified physical

model and quantify the smectic order of the stripe phase. We
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describe the stripes as fluctuating objects with a fixed width
~i.e., symmetric fluctuation modes!. We find that the system
is governed in the long-wavelength approximation by an
elastic Hamiltonian and obtain simple analytic expressions
for the bending and compression moduli.

We find that the symmetric fluctuation modes of the
stripes can have large amplitudes, which results in a failure
of our second-order~harmonic! approximation for the fluc-
tuation Hamiltonian at large length scales. However, we find
that the harmonic approximation of the Hamiltonianis ap-
propriate to describe the orientational order of the stripe
phase. We consider the normal to the stripe boundaryn̂(x)
and calculate the normal-normal correlation function,
gn(x)5^un̂(x)2n̂(0)u2&. We find that normals to the bound-
ary of the same stripe are highly correlated at all length
scales. This result implies that the stripe phase exhibits long-
range orientational order and that the smectic structure per-
sists over large length scales. A more accurate physical pic-
ture is obtained by considering higher orders@20# in the
fluctuation amplitude; however, we expect, according to our
result, that the orientational order of the phase is long ranged
in the more detailed theory as well.

It has been shown by other authors@15,20# that, in such
two-dimensional~2D! systems, free dislocations are present
at any finite temperature. The finite dislocation density,
nD , results in blobs of areajD

2 which are free of disloca-
tions. Combining this result with the one we obtain implies
that within the blobs the smectic structure persists. This
physical picture may fail, however, when the size of the
blobs is comparable with the stripe periodicity, since then
one can no longer refer to a supercrystal structure. Our result
also implies that the dislocations, rather than the fluctuations
of the stripe boundaries, lead to the destruction of the super-
crystal phase at higher temperatures.

This simplified model is supported by our calculation of
the roughness of the stripe boundaries~the mean square fluc-
tuations of the stripe width!, using a mean field approxima-
tion. These width fluctuations are important both for liquid
and solid stripes. In the case of a surface of a solid, the mean
square of the fluctuations (^y2&) determines whether the sur-
face is rough or faceted~nonrough!. In a liquid/gas interface
the dynamics of these fluctuations are important for the be-
havior of capillary waves. We find two scaling regimes for
the mean square fluctuations of the stripe width:~a! the high-
temperature regime, where^y2&;DmD andDm is the equi-
librium width of the minority stripes; and~b! the low-
temperature regime, wherêy2&;D2. The appropriate
scaling regime is determined by the dimensionless parameter
; T/m2D. In both regimes we find̂y2&!Dm

2 , in agreement
with our fixed stripe-width model. For the solid stripe case,
we find in regime~b! that, in contrast with two-dimensional
systems with only short-range interactions, where the rough-
ening temperature is zero, the long-range dipolar interactions
may induce faceting in the stripe boundaries at a finite tem-
perature, via a first-order phase transition. We note that even
in regime~a! the stripe boundaries are not strictly speaking
rough. The dipolar interactions, which give rise to the super-
crystal order, result in an additional restoring force acting on
the stripe one-dimensional interface. This restoring force re-
duces the mean square fluctuations by a macroscopic factor
relative to a free liquid interface.

An outline of the paper follows: We start in Sec. II with
a review of previous work on the equilibrium properties of
the stripe phase with a new emphasis on the energy scales of
the system. Our main results are presented in Secs. III and
IV. In Sec. III we present our fixed stripe-width model and
consider the symmetric fluctuation modes of stripes. Using
this model we quantify the smectic order of the system. Sec-
tion IV discusses the fluctuations of the stripe width and the
roughness of a stripe boundary. In the case of a solid stripe
we present a self-consistent calculation that predicts a first-
order roughening transition.

While we have focused on the essential results in the text,
many of the calculations are contained in the appendixes. In
Appendix A, we develop the necessary formalism for the
analysis of two-dimensional systems with power-law inter-
actions. Using Green’s theorem we transform the two-
dimensional system to a physical picture of interacting do-
main boundaries. Appendix B contains the derivation of the
interaction energy between two such fluctuating boundaries
for the general case of a power-law interaction. We use this
formalism specifically for dipolar interactions in the analysis
of the stripe phase. In Appendix C we present the normal
mode harmonic analysis of the stripe phase, resulting in
acoustic and optical branches in the fluctuation energy spec-
trum. A powerful mathematical tool is developed in Appen-
dix E, where we find a general mathematical relation be-
tween the discrete and continuous Fourier transforms of a
function, of which the Poisson summation formula is a spe-
cial case. This relation is used to extend the general wave-
vectorQ dependence of a discrete Fourier transformF(Q)
from F(Q50). This method may be used to extend some of
the results that appear already in the literature concerning
collectivemodes of stripe phases.

II. THE STRIPE PHASE IN EQUILIBRIUM

In order to better understand the fluctuating stripe phase,
we review in this section with some modifications and em-
phasis on the relative energy scales, the well-established
analysis of this phase in equilibrium@4,5,11,12#. We con-
sider a system of molecules that interact through a dipolar
repulsion and a short-range attraction~e.g., van der Waals
interaction!. It was shown that in such systems, in equilib-
rium, the competition between the long-range repulsion and
the short-range attraction may give rise to modulation in the
surface molecular density~i.e., supercrystal phases!.

We consider a one-dimensional supercrystal stripe phase
in the low-temperature regime where the domain walls are
sharp and where all entropic effects are included in the line
tension g. As shown in Fig. 1, the phase has a period
D5D11D2 and the unit cell has a basis of two stripes la-
beled 1,2 with dipolar densitiess1 ands2, respectively.
The surface fraction of the stripes labeled 1 isf5 D1/D,
where the parameterD1, which is the width of the stripes
labeled 1, is determined by the composition and the equation
of state. The size of the system in the direction parallel to the
stripes is denotedL. We use the notation (j ,m) to label the
stripes wherej is the cell index andm51,2 is the index of
the stripe within the cell. Using Eq.~A11! the dipolar poten-
tial is written Vdip5Kdr

23, where Kd is the interaction
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strength. We denote asV(R) the spatial dependence of the
potential

V~R!5
1

r3
, ~2.1!

where r5(R21D2)1/2 andD is the microscopic cutoff
@21,22#. The electrostatic part of the energy per cell is written

Ecell5
1

2 (
m,n51

2

(
j52`

`

smsnKd

3E
~0,m!

E
~ j ,n!

d2r
~0,m!

d2r
~ j ,n!

V~ urW
~0,m!

2rW
~ j ,n!

u!

5e1S11e2S2

2 1
2 m2 (

j52`

` E
~0,1!

E
~ j ,2!

d2r
~0,1!

d2r
~ j ,2!

V~ urW
~0,1!

2rW
~ j ,2!

u!,

~2.2!

wheree i5 pKds i
2/D is the energy density for a domain of

infinite size with dipolar densitys i , as defined in Eq.~A9!.
Si5LDi is the area of the stripe with dipolar densitys i and
m2[(s12s2)

2Kd . The sum in the last expression in Eq.
~2.2! accounts for the dipolar energy of the boundaries.

It is interesting and important to note that this boundary
energy is equivalent to that of a system with molecular den-
sitiess185s12s2 ands2850. Since we shall be interested
in this work only in the boundary energy, it is instructive to
use this equivalent system. We use this equivalent physical
picture in the schematic drawings of the stripe phase and
consider a system of condensed-phase stripes with molecular
density s18 ~shaded stripes! separated by vacuum stripes.

@This physical picture is appropriate for surface fractions
f, 1

2. For surface fractionsf. 1
2 one should interchange the

indices (1↔2).#
Using the approach of Flament and Gallet@23# ~see Ap-

pendix A! we transform the surface integrals of Eq.~2.2! into
line integrals over the boundaries of the stripes and obtain a
physical picture of interacting boundaries. Using Eqs.
~A13!–~A15! the electrostatic energy per cell in Eq.~2.2!
may be rewritten as

Ecell5LD@fe11~12f!e2#22Lm2F lnDD 111 ln
sin~pf!

p G .
~2.3!

We now introduce the microscopic~short-ranged! attrac-
tions through the line tensiong, which in principle may be
calculated using a microscopic model. The difference be-
tween the free energy density of the stripe phase and that of
a system with two homogeneous phases~i.e., two separate
and infinite domains! with dipolar densitiess1 ands2 and
with the same volume fractionf is given by

D f52
2m2

D F lnDD 111 ln
sin~pf!

p
2

g

m2G . ~2.4!

This energy difference arises only from the energy of the
boundaries in the system~including boundary-boundary in-
teractions!. Minimizing D f with respect toD gives the equi-
librium period of the supercrystal,

D5
pD

sin~pf!
eg/m2

, ~2.5a!

and the stripe width,D1, is given by

D15fD5
D

sinc~pf!
eg/m2

, ~2.5b!

where sinc(x)[ sin(x)/x. @These quantities differ from those
obtained by McConnellet al. @16# by a factore that arises
from the multipole correction term in Eq.~A14!. In order to
obtain the correct result in their work one should replace the
line tensionl by l2m2.# Using Eq.~2.5a! in Eq. ~2.4! we
obtainD f52 2m2/D,0 and thus the energy of the stripe
phase is always lower than that of a system with two homo-
geneous phases.

We note some interesting physical properties of the sys-
tem as given by these equilibrium quantities. The depen-
dence of the stripe width,D1, on the area fractionf is very
weak forf& 1

2. Defining the stripe width atf50 as

D0[ lim
f→0

D15Deg/m2
, ~2.6!

we find that the width of the stripes is relatively fixed, chang-
ing fromD15D0 at f50 toD1'1.6D0 at f5 1

2. Thus, the
system responds to a change in the surface fraction by ad-
justing the period of the supercrystal rather than the width of
the stripes. By rewriting Eq.~2.4!,

D f52
2m2

D F lnD1e

D
1 ln@sinc~pf!#2

g

m2G , ~2.7!

FIG. 1. The stripe phase in equilibrium. This supercrystal phase
is composed of alternating stripe domains, labeled 1,2, with dipolar
densitiess1 and s2, respectively. The supercrystal has a period
D5D11D2 and its unit cell contains two stripes (1,2). The cells
are labeled 0,61,62, . . . . Thearrows indicate the ‘‘polarities’’ of
the boundaries~i.e., the directions in which the line integrals are
taken along the boundaries of the stripes! for the calculation of the
dipolar energy in Eq.~A13!.
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it is possible to distinguish between the first term (Es),
which accounts for the self-energy of the stripe and the sec-
ond one (Eint), which accounts for the interstripe interac-
tions. In the regimef& 1

2 these energies satisfyEint/Es!1;
thus, a change inD1 is energetically very costly compared
with a change in the periodD5 D1/f. This stability will be
demonstrated more explicitly in the treatment of the antisym-
metric fluctuations of the boundaries in Sec. IV. Note that
the dependence of the periodD on the surface fractionf is
symmetric with respect tof5 1

2. This symmetry is a property
of D f as seen in Eq.~2.4!. As a consequence, if one consid-
ers the regimef> 1

2 all the previous discussion is applicable
with the replacementsD1→D2 andf→(12f).

It is interesting to note that the effect of the equilibrium
interstripe interactions@second term in the parenthesis in Eq.
~2.7!# is merely to increase the bare microscopic line tension
g. However, as we discuss in the following sections, the
effective line tension for the symmetric modes of this phase
is zero and due to the long-range dipolar interactions there
exists no trivial~microscopic! line tension for the antisym-
metric modes.

III. THE SYMMETRIC FLUCTUATION
MODES OF THE STRIPES

In Appendix C we analyze the normal mode spectrum of
the stripe phase in the harmonic approximation, and show
that it contains both optical and acoustic branches. However,
if one considers only long-wavelength modes, which domi-
nate some of the physical properties of the system, one finds
that the acoustic modes coincide with the symmetric modes
of the stripes; this leads to a simplified physical picture of the
fluctuating stripe phase.

In this section we show that the symmetric fluctuation
modes of the stripes can have large amplitudes. This results
in a failure of our second-order~harmonic! approximation
for the fluctuation Hamiltonian at large length scales. How-
ever, we find that the harmonic approximation of the Hamil-
tonianis appropriate to describe the orientational order of the
stripe phase. We consider the normal to the stripe boundary

nŴ (x) and calculate the normal-normal correlation function,

gn(x)5^unŴ (x)2nŴ (0)u2&. We find that normals to the bound-
ary of the same stripe are highly correlated at all length
scales. This result implies that the stripe phase exhibits long-
range orientational order and that the smectic structure per-
sists over large length scales. We stress that in order to ob-
tain the full physical picture one should go to higher orders
@20# in the fluctuation amplitude; however, we expect ac-
cording to our result that the orientational order of the phase
is long ranged in the more detailed theory as well.

It has been shown by other authors@15,20# that, in such
two-dimensional systems, free dislocations are present at any
finite temperature. The finite dislocation density,nD , results
in blobs of areajD

2 , which are free of dislocations. Combin-
ing this result with the one we obtain implies that within the
blobs the smectic structure persists. This physical picture
may fail, however, when the size of the blobs becomes small
compared with the stripe periodicity,D, since then one can
no longer refer to a supercrystal structure. Our result also
implies that the dislocations, rather than the boundary fluc-

tuations of the stripes, lead to the destruction of the super-
crystal phase at higher temperatures.

We use an approximation that treats the symmetric and
antisymmetric modes of the stripes independently. At the end
of Appendix C we argue that this approximation is justified
for long-wavelength modes in theŷ direction. In this section
we show that for the symmetric modes, the long-wavelength
modes are energetically less costly and hence have the larg-
est amplitudes. In Sec. IV we show that the antisymmetric
modes result in a relatively large restoring force. Therefore,
these modes are energetically unfavorable and their ampli-
tude is much smaller than that of the symmetric modes. We
thus neglect the coupling between the symmetric and anti-
symmetric modes, and use a simplified model for the analy-
sis of the symmetric modes. This model, as shown in Fig. 2,
takes the width of the stripes~labeled 1! to be constant, but
allows them to fluctuate with amplitudesy(x,i ), where i is
the cell index@i.e., y1(x,i )5y2(x,i )[y(x,i ), using the no-
tation of Appendix C, see also Fig. 6#. Experimental data
~see, for example, Ref.@24#! indicate that the stripe width is
relatively constant and hence agree qualitatively with this
model. This description is appropriate only for surface frac-
tions less than12, since atf5 1

2 the interaction between two
boundaries of adjacent stripes has the same weight as the one
between the two boundaries of the same stripe. Thus, for
f* 1

2 the two types of domains (1,2) interchange their roles
and one should fix the width of the stripes labeled 2 in order
to get the same results. With this model, which contains only
symmetric modes, we have only one degree of freedom per
cell, and Eq.~C4! for the full fluctuation Hamiltonian then
reduces to

DHs5
1

2 (
q,Q

u ỹ~q,Q!u2G̃~q,Q!, ~3.1!

FIG. 2. The symmetric modes of the stripe phase. The equilib-
rium positions of the stripe boundaries are shown in dashed lines.
Each boundary fluctuates with an amplitudey(x,i ), wherei is the
cell index. Thus, the stripe width does not change from its equilib-
rium value, and there is only one degree of freedom per cell. The
figure showsn̂0(x), which is the normal to the boundary of the
stripe~labeled 1) in the zeroth cell at the point„x,y(x)…. The angle
that this normal makes with theŷ axis is denotedu(x).
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where using Eq.~C3! ỹ(q,Q) is the discrete Fourier trans-
form of y(q,i ), andQP(2 p/D , p/D) lies in the first Bril-
louin zone of the reciprocal lattice of the supercrystal. In
Appendix F we calculateG̃(q,Q) and find in the long-
wavelength approximation~i.e., qD,QD!1),

G̃~q,Q!>
m2

D2 @B0~f!~QD!21K0~f!~qD!4#, ~3.2!

where B0(f) and K0(f), the dimensionless compression
and bending moduli, respectively, are functions of the sur-
face fractionf. The compression and bending moduli of the
system are related to these dimensionless quantities by the
relationsB5 (m2/D) B0 andK5m2DK0. This form of the
Hamiltonian,DHs , is in agreement with the elastic Hamil-
tonian used for lamellar phases and the system in equilibrium
has no effective line tension as a consequence of its spatial
isotropy ~see, for example, Ref.@13#!. In Appendixes F and
G we explicitly show the vanishing of the effective line ten-
sion@i.e., the vanishing of the coefficient of the (qD)2 term#.
Such an elastic Hamiltonian was derived phenomenologi-
cally both in the vicinity of the critical point@13# of this
phase, where the variation of the dipolar moment density in
the ŷ direction is small, and at low temperatures@14#, where
domain walls are sharp. It was calculated exactly for the
acoustic modes in similar systems of ultrathin magnetic films
@19#. We independently calculated it for the symmetric
modes, offering a simple physical picture of the stripes with
analytic expressions for the elastic constants for an arbitrary
surface fraction.

It is interesting to note that the elastic approximation is
valid when both (qD)!1 and (QD)!1. Hence, the period
of the supercrystal,D, has the same role in this sense in both
the x̂ and theŷ directions. Specifically, we find~in the limit
D/D→0)

K0~f!5
1

4p2 (
k51

1`
sin2~pkf!

k3
, ~3.3a!

B0~f!52@11sinc22~pf!22~pf!cot~pf!#. ~3.3b!

The result forB0 can be derived alternatively@17,25# using
the equilibrium free energy density of Eq.~2.4!,

B0[
D2

m2

]2~D fD !

]D2 . ~3.4!

Using the fluctuation Hamiltonian we now quantify the
amount of disorder in the stripe structure due to thermal fluc-
tuations. A convenient and conventional quantity describing
the order of the stripes is the director, or the normal to the
stripe boundary~see, for example, Ref.@26#!. Due to the
symmetry of the supercrystal the directors of different stripes
obey the same statistics, and we choose to do the calculations
for the stripe labeled zero. We introduce the normal-normal
correlation function,

gn~x!5^unŴ 0~x!2nŴ 0~0!u2&

52~12^cos@u~x!2u~0!#&!, ~3.5!

whereu(x), as shown in Fig. 2, is the angle betweennŴ 0(x)

andyŴ @i.e., u(x)[0 in equilibrium#. For small deviations of
the normal from its equilibrium value we use the Gaussian
approximation for the fluctuation Hamiltonian, Eq.~3.1!, and
the normal-normal correlation function is rewritten

gn~x!52~12e2~1/2! g
u
~x!!, ~3.6!

whereg
u
(x)[^uu(x)2u(0)u2& is the angle correlation func-

tion. Using Eq. ~3.2! in the equipartition relation
^u ỹ(q,Q)u2&5 T/G̃(q,Q) we find

g
u
~x![^uu~x!2u~0!u2&5

2

L(q q2^uy~q,0!u2&@12cos~qx!#

5
2T

NL (
q,Q

q2@12cos~qx!#

G̃~q,Q!

5
DT

2p2E
2p/D

1p/D

dQE
2`

1`

dq
q2@12cos~qx!#

G̃~q,Q!

5
2Tx~f!

pDm2AB0K0

~12e2ux/jcusinc~ ux/jcu!!

5
T

Kx~f!
~12e2ux/jcusinc~ ux/jcu!!, ~3.7!

where jc5D/x(f) is the correlation length of the normal
and K5m2DK0 is the bending modulus of the system.
x(f)5Ap/2(B0/K0)

1/4 is a dimensionless, slowly varying
function off of the order of unity. We are interested in the
large scale behavior of the system. In the limitx→` the
angle correlation function approaches a finite value, which is
independent ofx, but is a function of the surface fraction

gc~f!5 lim
x→`

g
u
~x!5

T

Kx~f!
[

sin~pf!

pK0~f!x~f!

T

m2D
e2bN,

~3.8!

where the ratiobN[NB
215g/m2 (NB is generally referred to

as thebond number!. In Fig. 3 we plotgc(f) in units of the
dimensionless parameter (T/m2D)e2bN. Our continuum
model is valid @see Eqs.~2.5! # for ebN@1 and hence
e2bN!1. Thus, (T/m2D)e2bN is generally exponentially
small and we find thatgc!1 for all realistic surface fractions
~i.e.,f@e2bN) @10#. @T/m2D5 (T/gD) bN andT/gD;1 in
the vicinity of the critical point. Thus, at room temperatures
we estimate thatT/m2D;1 and in any case not much greater
than 1.# Using the definition, Eq.~3.6!, this implies that the
normal does not decorrelate at large length scales,

lim
x→`

^un̂0~x!2n̂0~0!u2&5 lim
x→`

2~12e2~1/2! g
u
~x!!

>gc~f!!1, ~3.9!

orientational order is maintained, and our Gaussian~har-
monic! approximation is valid for the director field. How-
ever, as already mentioned by other authors@19# ~for the case
f5 1

2!, we find that the mean square fluctuations of a stripe
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^uy(x,i )u2& diverge in the thermodynamic limit for any sur-
face fractionf, and hence the stripe phase loses its compres-
sional rigidity. This divergence is overcome by the natural
finite size cutoff that exists in the system due to the finite
density of free dislocations. The dislocations will result in
asymmetric blobs of areajD

2 in which the stripe order will
persist@15,20#. The long-range order of the normal suggests
that finite stripes~due to dislocations! will be relatively
straight as long as the stripe supercrystal order is still present
locally.

It is interesting to find the condition for the validity
of this physical picture. The dislocation density is
nD'ac

22exp(2ED /kBT), whereac is the dislocation core
diameter andED is the isolated edge dislocation energy. Far
from the critical pointED is of the order of the bending
modulusK @27#. Numerical evaluation ofK leads to a rough
estimate that even at room temperatures the dislocation
length scalejD will become comparable with the stripe pe-
riodicity D only at surface fraction as low asf'0.1 ~the
lower bound for the surface fraction is increasing with tem-
perature!. Thus our physical picture is valid for a wide range
of surface fractions and temperatures.

Our analysis fails when the amount of disorder is in-
creased ~e.g., higher temperatures!, leading to isotropic
phases. However, it is striking that even in what seems in
experiments like isotropic phases@3,24#, the stripes tend to
maintain their width and their symmetric modes are domi-
nant.

IV. ROUGHNESS OF THE STRIPE BOUNDARY

We now extend the calculation of Sec. III to include fluc-
tuations in the stripe width~i.e., antisymmetric modes of the
boundaries!. These fluctuations are important both for liquid
and solid stripes. In the case of a surface of a solid, the mean
square of the fluctuations determines whether the surface is

rough or faceted. In a liquid/gas interface the dynamics of
these fluctuations is important for the behavior of capillary
waves. Using a mean field approximation we find two scal-
ing regimes for the mean square fluctuations of the stripe
width y0(x): ~a! the high-temperature regime, where
^y0

2&;D1D and ~b! the low-temperature regime, where
^y0

2&;D2. The appropriate scaling regime is determined by
the dimensionless parameter; T/m2D. In regime~b! we find
for the solid stripe case that the long-range dipolar interac-
tions may induce faceting in the stripe boundaries via a first-
order phase transition.@The transition is in fact between an
almost rough interface and a faceted one, as explained after
Eq. ~4.13!.#

A. Stripe-width fluctuations

Previously, we considered the symmetric modes alone
and froze one of the two degrees of freedom that exist per
cell by fixing the widths of the stripes to their equilibrium
values. In this section we demonstrate that this physical pic-
ture is realistic, due to the fact that the stripe-width fluctua-
tions are very small on the scale of the stripe width. We use
an approximation that treats the symmetric and antisymmet-
ric modes of the stripes independently. At the end of Appen-
dix C we argue that this approximation is justified for long-
wavelength modes in theŷ direction. In the case of the
symmetric modes, the long-wavelength modes are energeti-
cally less costly and hence have the largest amplitudes. Thus,
for calculations of physical quantities that depend mainly on
the symmetric fluctuations it is justified to neglect the cou-
pling between the symmetric and antisymmetric modes. In
this section we investigate the statistics of the width fluctua-
tions of the stripes~i.e., antisymmetric modes!. For these
fluctuations it is harder to justify such separation between the
symmetric and the antisymmetric modes. In order to do that
one has to go to the full fluctuation Hamiltonian in Eqs.~C4!
and ~C5!, transform the vectorỸ(q,Q) into symmetric and
antisymmetric components, and compare the magnitude of
the cross terms to that of the diagonal ones. Such a calcula-
tion is intractable analytically and its numerical evaluation is
left to future work. However, we assume that in order to find
the qualitative behavior of the width fluctuations it is suffi-
cient to consider the antisymmetric modes independently and
we use a simplified model to describe the system.

In Sec. III we found that the stripes can be considered as
locally straight and that the symmetric modes that have large
amplitudes are the long-wavelength ones. Thus, when con-
sidering the antisymmetric modes we use a model that con-
tains no symmetric modes. This model is consistent with our
result that the antisymmetric modes that have the largest am-
plitudes are those with wavelengths comparable with the
stripe width. In addition, we note that the terms that domi-
nate the fluctuation energy are those which arise from the
self-energies of the stripes. We also assume that statistically
~at high enough temperatures!, the antisymmetric modes of
different stripes are not coherent.

Hence, it is appealing to use a mean field approximation
and to consider the antisymmetric modes only for one of the
stripes ~labeled zero!. Thus, in our simplified model
the stripe boundaries fluctuate only with antisymmetric
modes and all the other stripes are at their equilibrium

FIG. 3. The limit of the correlation function of the angle of the
normal,gc(f), at large length scales~i.e., x@jc) in units of the
dimensionless parameter (T/m2D)e2bN, which is generally expo-
nentially small. Thus, for realistic values of the surface fraction
~i.e.,f.e2bN) we find thatgc(f)!1 and the angle does not deco-
rrelate.
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state, as sketched in Fig. 4. This implies~using the notation
of Appendix C! y1(x,0)52y2(x,0)[y0(x) and ym(x,i )
[0 for iÞ0. Equation~C4! for the fluctuation energy then
reduces to

DHa5
1

2(q uy0~q!u2Ga~q!. ~4.1!

The detailed derivation ofGa(q) is given in Appendix H,

Ga~q!54m2HD0
22@12 1

3 sin
2~pf!#1q2FK1~qD!

qD
2

1

~qD!2

1
K1~qD1!

qD1
1
1

2

g

m2G J , ~4.2!

whereK1(x) is the modified Bessel function of order 1 and
D05Deg/m2

is given by Eq.~2.6!. ExpandingGa(q) for
q!qmax; 1/D we obtain

Ga~q!>4m2HD0
22@12 1

3 sin
2~pf!#1q2F 1

2 ~ lnuqDu2b!

1
K1~qD1!

qD1
1
1

2

g

m2G J
5
4m2

D0
2 $a~f!1~qD0!

2@ lnuqD0u2b

2 1
2 ln@sinc~pf!#1M ~qD1!#%, ~4.3!

where in the last step we used the equilibrium value ofD1,
given by Eq.~2.5b!; b5 ln211

22gE.0 andgE50.577 216
is the Euler constant.M (x) is a function which is significant
only for large values ofqD1,

M ~x!5
K1~x!

x
2

1

x2
2 1

2 ~ lnuxu2b!; lim
x→0

M ~x!50.

~4.4!

The effect of the other stripes enters througha(f), which
is a positive and slowly varying function off,

a~f!511sin2~pf!@~pf!222 1
3 #;

lim
f→0

a~f!52; a~ 1
2 !'1.1. ~4.5!

Thus, in this mean field approximation the total effect of the
other stripes is todecreasethe restoring force on variations
from the equilibrium stripe width,D1. This result may seem
surprising, since the interstripe interactions tend toincrease
the restoring force with increasing surface fractionf, due to
the decreasing distance between the stripes. However, the
stripe widthD1 increases with increasingf. Thus, the stripe
self-interaction energy~i.e., interactions between the stripe
boundaries! decreases asf increases. This dominates in the
total restoring force, which decreases with increasingf.
@Note that this discussion and the following analysis are rel-
evant only forf& 1

2. For f. 1
2 the roles of the domains in-

terchange~i.e., 1↔2).# This result is in complete agreement
with the discussion of the energy scales in equilibrium at the
end of Sec. II.

Ga(q) is plotted in Fig. 5 for the two extreme surface
fractions,f50 andf5 1

2. It shows that the surface fraction
has little qualitative effect on the energy spectrum. The ex-
istence of a minimum forGa(q) implies that fluctuations of
the stripe width will be largest at this wavelength, whose
value is on the order of the stripe widthD1. This suggests
that the transition from the stripe phase to the bubble phase
will be to bubbles with diameters of the order of the stripe
width. The fact that this characteristic length scale is indeed
much smaller than those of the symmetric modes supports
our assumption at the beginning of this section.

FIG. 4. The antisymmetric modes of the stripe labeled 1 in the
zeroth cell~the choice of the stripe is irrelevant due to the symmetry
of the phase!. The boundaries of the stripe fluctuate with amplitudes
y0(x) and2y0(x). We use a mean field approximation, where the
rest of the cells are in their equilibrium state.

FIG. 5. The kernel of the antisymmetric modesGa(q) in units
of 4m2/D0

2 as a function of the dimensionless wave numberqD0.
The solid curve corresponds tof50 and the dashed curve corre-
sponds tof5

1
2.
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Using Eq. ~4.4! in the limit qD1!1, Ga(q) is further
simplified,

Ga~q!>
4m2

D0
2 „a~f!1~qD0!

2$ lnuqD0u2b

2 1
2 ln@sinc~pf!#%…. ~4.6!

This approximate form implies thatGa(q) has essentially a
quadratic dependence on (qD0) at low values of this argu-
ment. We thus phenomenologically approximateGa(q) by a
parabola

Gap~q!5am2@~ uqu2c!21b2#, ~4.7!

wherea,b, andc are functions off, that are obtained by
fitting Gap(q) of Eq. ~4.7! toGa(q) of Eq. ~4.3!. In principle
we find thata;1 andb,c; 1/D1.

Using Eq. ~4.7! and the equipartition relation
^uy0(q)u2&5 T/Gap(q) we calculate the mean square fluc-
tuation of the stripe boundary,

^y0
2&5

1

L(q ^uy0~q!u2&>
1

pE0
`

dq
T

Gap~q!

5
T

pabm2 FarctanS cbD1
p

2 G' 1

4

T

m2D
D1D, ~4.8!

whereL is the length of the stripes. This scaling is obtained
for both extreme values of the surface fraction,f50 and
f5 1

2. We find it to be in good agreement with an exact
numerical evaluation of̂y0

2& usingGa(q) of Eq. ~4.3!. It is
interesting to note that by adjustingT/m2D we obtain two
scaling regimes for the amplitude of the mean square fluc-
tuation of the boundary~note, however, that the relation
eg/m2

@1 must hold for consistency!: ~a! if T/m2D;1, then

^y0
2&;D1D; ~b! if T/m2D;e2g/m2

, then^y0
2&;D2. Both re-

gimes obeŷ y0
2&!D1

2, which means that the fluctuations of
the stripe width are very small on the scale of the stripe
width. This result supports our model in Sec. III, where we
fixed the stripe width to its equilibrium value. The qualitative
difference between the two regimes is manifested in the con-
text of the analysis of the roughness of a solid stripe~i.e., a
stripe that consists of a crystalline monolayer!.

B. Roughening of solid stripes

The stripe phase that we now focus on consists of crys-
talline domains separated by dilute gas domains. This phase
is characterized by an additional restoring force on its inter-
face position, due to the crystal periodic potential, which
tends to pin the interface. While the minimization of the
energy of the system results in a periodic striped structure
~faceted phase!, the entropy associated with the wandering of
the interfaces between these stripes tends to delocalize the
nominally straight domain wall boundaries~rough phase!.
The following analysis is for one interface, but the result is
relevant for any of the stripe boundaries of the supercrystal.
We emphasize that our calculations are within the framework
of a mean field approximation that decouples the symmetric
fluctuation modes from the width fluctuations. Therefore, our

results relate to ‘‘local’’ roughness and faceting, since the
symmetric fluctuation modes do have divergent amplitudes
at large enough scales so that the crystal is not well defined
at very large length scales due to the symmetric modes.

Using the notations of Ref.@23#, we consider a one-
dimensional interface with equilibrium position parallel to
the x̂ direction. The pinning effect can be modeled by a
periodic potentialU(y), whereŷ is the direction normal to
the interface. For a given interface deformationy0(x), the
interface pinning energyEp is written

Ep5E
2 L/2

L/2

dxU„y0~x!…. ~4.9!

The interface state is determined by the average of the pin-
ning energy,̂Ep&, over the fluctuations. If̂Ep&/L is finite as
the interface lengthL goes to infinity, the interface is smooth
~nondiverging! andU is relevant on large scales. However, if
^Ep&/L goes to zero in this limit, the long-wavelength fluc-
tuations are identical to those in the liquid state. In this case,
U is not relevant on large scales and the interface is rough. In
its general form,̂ Ep& is written

^Ep&5E E dx D@y0~x!#U„y0~x!…P@y0~x!#, ~4.10!

whereP@y0(x)#;exp{2 DHp@y0(x)#/T} is the probability for
a thermal fluctuation to have a configurationy0(x) and the
integration*D@y0(x)# is performed over all possible con-
figurations ofy0(x). Using Eqs.~4.1! and ~4.9! the fluctua-
tion Hamiltonian that includes the pinning energy is written

DHp@y0~x!#5DHa@y0~x!#1Ep@y0~x!#. ~4.11!

However, using this form ofDHp is generally intractable
even for the simplest forms of the pinning potentialU(y).
Thus, we shall investigate the system using approximate ap-
proaches. In what follows we describe two such approaches.
The first one treatsU(y) as a small perturbation and the
second one is less restricted and uses a self-consistent varia-
tional approach. In both approaches we use harmonic ap-
proximations forDHp , which are thus tractable.

1. Perturbation calculation

Calculations in three dimensions have shown@28# that the
interface state does not depend on the details ofU and that a
roughening transition temperature (TR) always exists. A
similar calculation for a two-dimensional system shows that
for the case of short-range interactionsTR[0. In our analy-
sis, we examine the effect of the long-range interactions on
the interface state.

For simplicity we takeU(y)52U0cos(2p y/D0), where
D0;D is the crystal period~of the internal crystalline struc-

ture of the stripe! in theyŴ direction. Using this potential in a
system which is modeled by a harmonic Hamiltonian,
^Ep&h is written
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^Ep&h52E E dx D@y0~x!#U0cosS 2p
y0~x!

D0
DPh@y0~x!#

52U0L expF22p2
^y0

2&h
D0
2 G , ~4.12!

where the subscripth is used to denote that the averaging is
done with respect to the harmonic Hamiltonian.

Using the first approach we now treatU(y) as a small
perturbation. Noting thatDHa is already harmonic, we can
write DHp>DHa and to first order inU we find

^Ep&>2U0L expF22p2
^y0

2&

D0
2 G , ~4.13!

where^y0
2& is given by Eq.~4.8!.

It is interesting to note how the two scaling regimes that
were found for̂ y0

2& affect the roughness of the interface. In
regime ~a!, whereT/m2D;1 and ^y0

2&;D1D, the absolute
value of the argument of the exponent in Eq.~4.13! is expo-
nentially large (;eg/m2

), but does not diverge in the thermo-
dynamic limit. This result is unique in the sense that it does
not correspond to the classical case of a rough interface,
where the argument of the exponent diverges in the thermo-
dynamic limit, resulting in̂ Ep&50. However, since the re-
storing potential is exponentially small, it is not sufficient to
make the interface smooth on the microscopic scale and the
interface is for practical purposes quite rough in this regime
@e.g., the correlation length of the interface fluctuations is
exponentially large, as shown using the second approach in
Eq. ~4.26!#. At very small values ofT/m2D;e2 g/m2

, we
enter scaling regime~b!, where^y0

2&;D2. In this regime, the
argument of the exponent may become of the order of unity,
resulting in a faceted~nonrough! interface.

In realistic Langmuir monolayers it seems that the param-
eters cannot reach the extreme values needed for the second
scaling regime and thus we do not expect faceting according
to this approximation approach. Still, the roughness of the
interface can be reduced drastically to be somewhere be-
tween the two regimes. However, these calculations are valid
for any two-dimensional system with dipolar interactions and
there may be other systems~e.g., ultrathin ferromagnetic lay-
ers! for which the parameters may fall within the second
scaling regime, and thus induce faceting.

2. Self-consistent theory

We now extend our analysis and use the second approach,
which treats self-consistently the effect of the pinning poten-
tial in the fluctuation Hamiltonian. Using this approach we
show that the roughening transition is in fact less restricted
than what is predicted by the perturbative approach and that
the transition may be a first-order one.

We follow Ref. @29# and investigate the system using an
approximate variational approach. We consider a reference
HamiltonianHr , which is tractable, and use the theorem
@30# that bounds the exact free energy,Fe , by

Fe,F5Fr1^DHp2Hr& r , ~4.14!

whereFr is the free energy of a reference system and the
subscriptr denotes that the average is taken with respect to
the Boltzman factore2Hr /T of the reference Hamiltonian.
We use a harmonic approximation for the reference Hamil-
tonian, which is thus written

Hr5
1
2 T(

q
G~q!uy0~q!u2. ~4.15!

Using Eqs.~4.1!, ~4.11!, and ~4.12! and the equipartition
relation ^uy0(q)u2& r5 1/G(q), Eq. ~4.14! is rewritten

F5Fc1
T

2(q lnG~q!1
1

2(q
Ga~q!

G~q!
2LU0e

22p2g0,

~4.16!

whereFc is a constant andg0 is defined as

g05
1

LD0
2 (

q
@G~q!#21[

^uy0u2& r
D0
2 . ~4.17!

We now minimizeF with respect toG(q) and find the equa-
tion that definesG(q)

T

G~q!
2
Ga~q!

G~q!2
2
4p2U0D0

22

G~q!2
e22p2g050. ~4.18!

We thus find

G~q!215
T

Ga~q!1am2j22 , ~4.19!

where using Eq.~4.12! we find

j225
4p2U0

am2D0
2e

22p2g0[
4p2

am2D0
2L

u^Ep& r u. ~4.20!

In the latter expression we explicitly observe the role of the
intensive quantitŷEp&/L. If it is finite in the thermodynamic
limit, j22 is finite andG(q) differs from Ga(q) ~i.e., the
pinning potential is relevant!. However, if it vanishes we
havej22→0,G(q)→Ga(q) and the pinning potential is not
relevant.

Since g0 is related to the sum over all theG(q), Eq.
~4.19! has to be solved self-consistently to yield a value for
j. We use Eq.~4.7! to approximateGa(q) by Gap(q). Per-
forming the sum overq in Eq. ~4.19! we obtaing0, which is
then used in Eq.~4.20! to derive an equation forj. The result
is
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g05
T

pam2D0
2Ab21j22

H arctanS c

Ab21j22D 1arctanS p

D
2c

Ab21j22
D J , ~4.21!

and

S pj

D0
D 22

5
4U0

am2 expH 2
2pT

am2D0
2Ab21j22

F arctanS c

Ab21j22D 1arctanS p

D
2c

Ab21j22
D G J . ~4.22!

Definingh[(D0/pj)2, the previous equation is rewritten

h5a0expH 2
t

Ah01h
FarctanS c0

Ah01h
D

1arctanS R2c0

Ah01h
D G J , ~4.23!

where we defined the following dimensionless parameters:

a0[
4U0

am2 ; t[
2T

am2D0
; h0[S bD0

p D 2; c0[
cD0

p
;

R[
D0

D
;1. ~4.24!

It is important to note thath50 is not a solution to Eq.
~4.23!. It implies that as long ash0Þ0 (bÞ0), we have
j22Þ0 and thuŝ Ep&Þ0. The pinning potential is always
relevant to some extent and as we concluded, using the first
approach, the interface is never fully rough. Physically, the
additional restoring force on the interface position due to the

long-range interactions bounds the lowest free mode to be
qmin;b;D1

21, while for a free interface it is;L21 ~system
size limited!. This effect is very strong for stripe domains,
but we expect it to be irrelevant in systems of finite size
domains, where the size cutoff is already related to the do-
main size and not to the system size.

In order to find whether faceting is possible in this system
we have to explicitly solve Eq.~4.23! for h (j). We find that
at high temperatures there is only one solutionj1@D1,
which implies that the pinning effect is negligible. However,
as the reduced temperaturet is decreased below a threshold
value two new solutionsD0,j2,3!D1 appear, where the
solution with the smaller value ofj, j3, corresponds to a
minimum of the free energy. Ast is further decreased,j2
andj1 vanish andj3 thus corresponds to a global minimum
of the free energy. This is a first-order transition mechanism
and in order to quantify the transition we rewrite the free
energy of Eq.~4.16! as a function ofh and find its global
minimum. Using theG(q) that minimizes the free energy as
given by Eq. ~4.19!, and using Eq.~4.7! to approximate
Ga(q) by Gap(q) we write theh dependent part of the free
energy in a dimensionless form,

f ~h!5
2D0

LT
F2 f c5c0ln~h1h01c0

2!1~R2c0!ln@h1h01~R2c0!
2#1

2h01h

Ah01h
FarctanS c0

Ah01h
D 1arctanS R2c0

Ah01h
D G

2
a0

t
expH 2

t

Ah01h
FarctanS c0

Ah01h
D 1arctanS R2c0

Ah01h
D G J , ~4.25!

where all theh independent terms of the free energyF are
lumped intof c . Rewriting Eq.~4.23! with h!h0 ,c0

2 we find
that above the transition temperaturet

R
the value of the or-

der parameter is

h1'a0expH 2
t

Ah0
FarctanS c0

Ah0
D 1

p

2 G J !h0 ,c0
2 ,

~4.26!

and we note thath0 ,c0
2;e22bN, and thush1 is practically

zero. Rewriting Eq.~4.23! with h@h0 ,c0
2 we find that below

t
R
the value of the order parameter is determined by the

self-consistent equation

h35a0expF2
t

Ah3

arctanS RAh3
D G . ~4.27!

Below the transition temperature we expandf (h) for
h@h0 ,c0

2 and find the transition temperature by equating
f (h)5 f (h1)'0. SubstitutingR51 and using the limit
a0!1 in Eq. ~4.27! we find that the transition is character-
ized by
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h
R
5h3utR'e21a0; t

R
'A4a0

p2e
0.386Aa0.

~4.28!

This solution is thus restricted to strengths of pinning poten-
tial which fall in the rangeh0 ,c0

2!a0!1. The upper limit is
needed for our theory to be consistent, sincea0*1 implies
jR&D0 ~i.e., the correlation length is shorter than the micro-
scopic cutoff!, which is not physical. Hence, fora0*1 a
more refined theory is needed in order to describe the sys-
tem, but we still expect a first-order transition. For a very
weak pinning potential (a0&h0 ,c0

2) the first-order transition
mechanism is destroyed and there is a smooth change in the
correlation lengthj with temperature.

The predictions of the two different approaches may seem
at first contradictory. The reason that the perturbative ap-
proach does not predict the first-order transition is that it
only finds the solutionj1 and follows it as the temperature is
decreased. Thus, this approach is correct at high enough tem-
peratures, but fails in the low-temperature regime where the
effect of the pinning potential is strong and hence it can be
no longer treated perturbatively. The self-consistent ap-
proach indeed predicts that as the pinning potential becomes
weaker~decreasinga0) the roughening transition tempera-
ture is decreasing and therefore the perturbative approach
becomes valid for lower temperatures. For very low values
of a0&h0 ,c0

2 the self-consistent approach does not predict a
transition either. We conclude that the self-consistent ap-
proach is more general and that the perturbative approach is
only a special case of it.

We note that the previous treatments of the roughening
transition in two-dimensional systems~with only short-range
interactions! predicted that it occurs only atTR[0, due to
the large fluctuations@31,32#. Our results suggest a possible
first-order transition.

V. DISCUSSION

We now summarize our results and discuss their experi-
mental implications. We emphasize that our predictions are
relevant for the low-temperature regime, far enough from the
critical point for the onset of the stripe order.

We calculated the equilibrium stripe width and stripe pe-
riodicity as functions of the surface fraction of the dense
phase. The dependence of these quantities on the surface
fraction is unique to systems with dipolar interactions. It is
still unclear to what extent the real physical systems are in-
deed dominated by long-range dipolar interactions. Hence,
measuring the surface fraction dependence of these quanti-
ties can verify this physical picture and will give an estimate
of thebond numberm2/g.

In our analysis of the symmetric modes we found that the
stripe phase exhibits long-range orientational order. We pre-
dicted that if the dislocation density is not too high, the
stripes are practically straight within the blobs that are free of
dislocations. This prediction can be qualitatively verified ex-
perimentally, probably by optical imaging. We assume that
our infinite-length stripe model will have corrections due to
the presence of dislocations, which will make the stripes less
straight than our idealized model predicts.

In our analysis of the fluctuations in the stripe width we

calculated the thermal roughness of the stripe boundaries.
This quantity will enter into an analysis of the line shape in
scattering from the stripes. In the case of solid stripes, our
self-consistent calculation suggests a possible first-order
roughening transition in a realistic region of the physical
parameter space. This prediction has yet to be verified ex-
perimentally. We note that our treatment of this problem is
within a framework of a mean field model. Thus, the effects
of the distant stripes and the coupling to the symmetric fluc-
tuation modes of the stripes may modify our results. Some
more theoretical work that will include these effects as well
as computer simulations based on a microscopic Hamiltonian
of the interface must be done in order to complete the mean
field picture that we have presented.
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APPENDIX A: SYSTEMS WITH LONG-RANGE
POWER-LAW INTERACTIONS

In this Appendix we present a general formalism for the
treatment of 2D systems with long-range power-law interac-
tions. This formalism decouples the energy of the system
into separate bulk and boundary terms. We then use this
formalism in the specific case of dipolar interactions.

1. General case

We consider a 2D system of particles interacting through
an isotropic repulsive pair potential~the attractive case was
treated by Flament and Gallet@23#! which depends only on
the interparticle distance

Vn5
Kn

R
n , ~A1!

whereR5urW12rW2u and with interaction strengthKn.0. To
describe phenomena on length scales much larger than those
of a molecular size, it is appropriate to take the continuum
limit, where we introduce the particle densitys(rW). The in-
teraction energy between two domainsS1 and S2 ~which
may overlap! can be written as

En5
1

2ES1ES2d2r 1d2r 2s~rW1!s~rW2!Vn . ~A2!

In the following analysis we consider the case of homoge-
neous distributions of particles within each of the domains;
in addition we assume that the system is at sufficiently low
temperatures so that the domain boundaries are sharp. Hence,
it is possible to writes(rW1)s(rW2)[s1s2 for R>a and
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s(rW1)s(rW2)[0 for R,a, wherea is the microscopic cutoff
comparable to the interparticle spacing. Thus, the only spa-
tial dependence in the integrand of Eq.~A2! comes through
Vn . Following McConnell and Moy@6#, Green’s theorem
@33# is used to transform the double surface integral into a
double line integral over the contoursC1 andC2 surrounding
S1 andS2, respectively,

E
S1
E
S2

d2r 1d
2r 2S ]2G

]x1]x2
1

]2F

]y1]y2
D

5 R
C1

R
C2

~Fdx1dx21Gdy1dy2!.

If F[G is only a function ofR, we have

E
S1
E
S2

d2r 1d
2r 2¹RW

2F52 R
C1

R
C2

FdlW 1•dlW 2 . ~A3!

Following Flament and Gallet@23# we introduce the function
Pn(R) such that

¹2Pn~R!5H 1
2 Vn~R! if R>a;

0 if R,a.
~A4!

For nÞ2, Pn is given by

Pn~R!5H AnS aRD n22

R>a;

AnF12~n22!lnSRa D G R,a;

An5
Kn

2~n22!2an22 . ~A5!

This function and its derivative are continuous atR5a. Pn satisfies the required conditions everywhere except atR50, where
¹2Pn522p(n22)And

(2)(R). In the particular casen52, we haveP2(R)5(K2/4)@ ln(R/a)#
2 for R.a andP2(R)50 for

R,a. Using the definition ofPn(R) and the Green’s theorem@Eq. ~A3!#, Eq. ~A2! can be rewritten as

En5Es1Ec52p~n22!Ans1s2E
S1
E
S2

d2r 1d
2r 2d

~2!~R!2s1s2 R
C1

R
C2

Pn~R!dlW 1•dlW 2 . ~A6!

En appears as the sum of a surface termEs and a boundary termEc . This is readily shown in the following example. Consider
a domain with particle densitys1 and areaS1 embedded in a 2D bulk with particle densitys2 and areaS2 . The energy of this
bubblelike system can be written as

Ebubble5
1
2 s1

2E
S1
E
S
d2r 1d

2r 2Vn1
1
2 s2

2E
S
E
S2

d2r 1d
2r 2Vn2

1
2 ~s12s2!

2E
S1
E
S2

d2r 1d
2r 2Vn , ~A7!

whereS5S11S2 . Taking the thermodynamic limit (S2→`) for the casen.2 and using Eq.~A6! this energy can be
decoupled into

Ebubble52p~n22!Ans1
2S112p~n22!Ans2

2S22~s12s2!
2 R

C1
R
C1

Pn~R!dlW 1•dlW 21EB

5e1S11e2S22~s12s2!
2 R

C1
R
C1

Pn~R!dlW 1•dlW 21EB , ~A8!

whereEB52s
2

2r
B
r
B
Pn(R)dlW 1•dlW 2 andB is the boundary

of the system.e i is the energy per unit area for a domain of
infinite size with particle densitys i and is given by

e i52p~n22!Ans i
2[ 1

2 s i
2E

r.a
d2rVn~r !. ~A9!

The integral definition ofe i is convergent only forn.2.
This is consistent with the statement@23# that for a straight
boundary,Ec /Es diverges in the thermodynamic limit for the

casen<2. When the boundary of the system is fixed,EB is
a constant and the relevant energy of this system is

DEbubble5Ebubble2EB

5e1S11e2S22~s12s2!
2 R

C1
R
C1

Pn~R!dlW 1•dlW 2.

~A10!

This analysis for a system of two domains is extended in
Sec. II to a system of infinite number of domains in the case
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of a supercrystal.
The use of Green’s theorem therefore allows a convenient

physical picture of interacting boundaries. This simplifica-
tion will be used in the treatment of the fluctuations of the
domain boundaries, where the area of the domains is con-
served and the only relevant energy is that of the boundaries.

2. Dipolar case and application to the stripe phase

In the case of dipolar interactions (n53) Eq. ~A10! is in
agreement with the formalism of McConnellet al. @21,34#,
and differs from it only in the way the microscopic cutoff is
introduced. In the latter, the microscopic cutoff is explicitly
included in the potential which is written

Vdip[V35
Kd

r3
, ~A11!

wherer5(R21D2)1/2 andD is the microscopic cutoff. Us-
ing this definition implies that¹2P5 1

2V everywhere; thus,

P is not restricted as in Eq.~A5!. This form simplifies the
calculation of the line integrals and we shall use it in the rest
of this work @22#.

In the treatment of the stripe phase we take~for simplic-
ity! Kd out of the definition of P. We introduce
V(R)5r23, as defined in Eq.~2.1!, and the functionP(R)
that satisfies¹2P(R)5 1

2V(R). Using Eq.~2.2! the electro-
static part of the energy per cell is written

Ecell5e1S11e2S2

2 1
2 m2 (

j52`

` E
~0,1!

E
~ j ,2!

d2r
~0,1!

d2r
~ j ,2!

V~ urW
~0,1!

2rW
~ j ,2!

u!.

~A12!

Using Green’s theorem, Eq.~A3!, for each of the integrals in
Eq. ~A12! we obtain a physical picture of interacting bound-
aries of polarities, which are indicated by the arrows in Fig.
1. The dipolar energy per cell is now written

Ecell5e1S11e2S21m2 (
j52`

` R
~0,1!

R
~ j ,2!

P~ urW
~0,1!

2rW
~ j ,2!

u!dlW
~0,1!

•dlW
~ j ,2!

5e1S11e2S21m2 (
j52`

` E
2 L/2

L/2 E
2 L/2

L/2

dx1dx2$P„A~ j1f!2D21~x12x2!
2
…1P„A~ j2f!2D21~x12x2!

2
…

22P„A~ jD !21~x12x2!
2
…%, ~A13!

where in the last step we used the fact that in the thermody-
namic limit ~i.e., L→`) the only significant contribution to
the line integrals comes from the boundaries parallel to the
stripes. Since these are line integrals, each boundary has a
‘‘polarity’’ ~up or down! as indicated by the arrows in Fig. 1.
The interaction energy between two antiparallel boundaries
separated by a distancew!L is

E~w!52m2E
2 L/2

L/2 E
2 L/2

L/2

dx1dx2P„A~x12x2!
21w2

…

5H 2m2L lnS 2LweD if w@D;

2m2L lnS 2LD D if w50.

~A14!

The boundary-boundary interaction kernel is written
P5 1

2r
21 for r@D, which is always correct forw@D. The

casew50, which may be referred to as the self-energy of
the boundary, corresponds to the last term of Eq.~A13! with
j50. In this case a multipole correction term, which is
2m2 per unit length, must be taken into account as shown by
McConnell and de Koker@21,35#.

Using Eq.~A14! for each of the terms in the sum in Eq.
~A13!, and using the identity

sin~pf!5~pf!)
n51

` F12S f

n D 2G , ~A15!

we finally obtain Eq.~2.3!,

Ecell5LD@fe11~12f!e2#22Lm2F lnDD 111 ln
sin~pf!

p G .
~A16!

APPENDIX B: FLUCTUATIONS
OF TWO BOUNDARIES

The use of Green’s theorem gives a physical picture of
interacting boundaries through some pair potential. Thus, in
order to analyze the fluctuating stripe phase we consider the
case of two fluctuating boundaries. This analysis is extended
to the stripe phase in Appendix C. As in Appendix A we start
with the more general case and consider a power-law inter-
actionVn as defined in Eq.~A1!. In Sec. II it was shown that
the interactions are reduced to line integrals over straight and
parallel boundaries. We now consider two such boundaries
of lengthL, separated by a distancew ~the casew50 was
treated by Flament and Gallet@23#! and let them fluctuate
about their equilibrium positions with small perturbations
y1(x1) andy2(x2) with ^yi&xi50. Due to the extra line

lengthdlW i has now a component in theyŴ direction and be-
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comesdlW i56dxi(xŴ1 dyi /dxi yŴ ), where the plus sign corre-
sponds to a down arrow boundary and the minus to an up
one ~see Fig. 1!. The interaction energy of two antiparallel
boundaries separated by an average distancew as in Eq.
~A14! becomes

En~w!52m2E
2 L/2

L/2 E
2 L/2

L/2

dx1dx2

3Pn„A~x22x1!
21~w1y22y1!

2
…S 11

dy1
dx1

dy2
dx2

D .
~B1!

@In order to be consistent with the notation of Appendix A
and Sec. II we havem25(s12s2)

2 for nÞ3 and
m25(s12s2)

2Kd for n53.# After expandingPn up to sec-
ond order in y and assumingdyi /dxi!1 one finds
En(w)5En

0(w)1DEn(w), whereEn
0(w) is the interaction

energy of the straight boundaries, andDEn(w) is the fluc-
tuation energy, given by

DEn~w!52m2E
A
dx1dx2Fdy1dx1

dy2
dx2

Pn~r !

1
1

r

1

2
~y12y2!

2S 12
w2

r 2 D ]Pn~r !

]r

1 1
2 ~y12y2!

2
w2

r 2
]2Pn~r !

]r 2

1~y22y1!
w

r

]Pn~r !

]r G . ~B2!

Here, r5A(x12x2)
21w2 and the double line integral is

now considered as a surface integral over a square of area
A5L2. The integral in the last term ofDEn(w) vanishes for
n.2 in the thermodynamic limit, since the average value of
the fluctuations is zero. Applying Green’s theorem again we
obtain

DEn~w!52 1
2 m2H E

A
dx1dx2~y12y2!

2¹2Pn

2 R
B
dx1

]

]x1
@~y12y2!

2Pn#

1 R
B
dx1F ]

]x1
~y12y2!

2GPn

2 R
B
dx2F ]

]x2
~y12y2!

2GPnJ , ~B3!

whereB represents the contour of the squareA. Using peri-
odic boundary conditionsy(2 L/2)5y(L/2) the second in-
tegral is found to be independent of the system size,L, in the
thermodynamic limit and hence negligible with respect to the
first one. The second integral vanishes identically forw50
as argued by Flament and Gallet@23#. Thew50 equivalents
for the last two integrals do not appear in their results. We
find that these two integrals are also negligible in the ther-

modynamic limit with respect to the first one forn.2. Thus,
for n.2 we are left in the thermodynamic limit with

DEn~w!52 1
2m2E

A
dx1dx2~y12y2!

2¹2Pn~r !

52 1
4 m2E

A
dx1dx2~y12y2!

2Vn~r !. ~B4!

Expanding yi in the Fourier series, yi(xi)5 (1/
AL) (qyiqe

iqxi, we obtain in the thermodynamic limit

DEn~w!5 1
4m2H(

q
@Ṽn~q,w!1Ṽn~2q,w!#y1qy2q

*

2(
q

~ uy1qu
21uy2qu

2!Ṽn~0,w!J , ~B5!

whereṼn(q,w)[*
2`

1`
duVn(Au21w2)eiqu.

APPENDIX C: NORMAL MODE ANALYSIS
OF THE FLUCTUATING STRIPE PHASE

In this Appendix we consider the fluctuations of the
boundaries of the stripes about their equilibrium positions,
assigning an independent small perturbation with a zero av-
erage to each of the boundaries, as shown in Fig. 6. We
derive an expression for the fluctuation free energy, that
leads to two branches~acoustic and optical! in the energy
spectrum.

In Sec. II we treated the stripe phase in equilibrium and
considered the energy per cell in Eq.~2.2!, which was pos-
sible due to the symmetry of this phase. However, when we

FIG. 6. The fluctuating stripe phase. The equilibrium positions
of the stripe boundaries are shown in dashed lines. Each boundary
fluctuates with an amplitudeym(x,i ), wherei is the cell index and
m51,2 is the boundary index within the cell. Using Green’s theo-
rem, the dipolar fluctuation energy is represented by double line
integrals that correspond to boundary-boundary interactions. The
interactions are between boundaries of stripes labeled 1 and stripes
labeled 2. Each boundary has a ‘‘polarity,’’ indicated by an arrow,
that corresponds to the direction of integration along this boundary.
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treat the fluctuations of this phase we must consider the total
fluctuation energy. Using the (j ,n) notation of Eq.~2.2! we
find

Edip5
1

2 (
m,n51

2

(
i , j52`

1`

smsnKdE
~ i ,m!

E
~ j ,n!

d2r
~ i ,m!

d2r
~ j ,n!

3V~ urW
~ i ,m!

2rW
~ j ,n!

u!

5Eb1m2 (
i , j52`

1` R
~ i ,1!

R
~ j ,2!

3P~ urW
~ i ,1!

2rW
~ j ,2!

u!dlW
~ i ,1!
•dlW

~ j ,2!
, ~C1!

where Eb5e1A11e2A2 and m25(s12s2)
2Kd . A1 and

A2 are the total areas of the stripes with dipolar densities
s1 ands2 , and energy densitiese1 ande2, respectively.
These areas are fixed since the perturbations have a zero
average and thusEb is the equilibrium bulk energy. Each of
the contour integrals in Eq.~C1! can be divided into two line
integrals@of the same form that was considered in Eq.~B1!
for two fluctuating boundaries#, since in the thermodynamic
limit the contribution from the ends of the stripes is negli-
gible. Subtracting the total equilibrium energy of the stripe
phase and using Eq.~B4!, the relevant electrostatic energy
for the analysis of the fluctuations is written

DEdip5Edip2Eequilibrium5 (
i , j52`

1`

(
n,m51

2

~21!m1n

3DE
j ,m

i ,n
~@ j2 i1~m2n!f#D !

[2 1
4m2 (

i , j52`

1`

(
n,m51

2

~21!m1nE
2 L/2

L/2 E
2 L/2

L/2

dx1dx2

3@ym~x1 , j !2yn~x2 ,i !#
2

3V„A~x12x2!
21@ j2 i1~m2n!f#2D2

…, ~C2!

whereV(R) was defined in Eq.~2.1! and using the definition
of the equilibrium dipolar energy per cell in Eq.~2.3! we
haveEequilibrium5 ~number of cells)3Ecell . The boundary
fluctuation amplitudes are denotedym(x,i ), where i is the
cell index andm51,2 is the boundary index within the cell,
as shown in Fig. 6. The indices (i ,n),( j ,m) were attached to
DE in order to label the boundaries 1,2 that appear in Eq.
~B4!. We diagonalize this quadratic form of the energy by
transforming both thex coordinate and the discrete
coordinates j ,i into Fourier space. For x
we write ym(x, j )5 (1/AL) (qym(q, j )e

iqx, where q
P(2 p/D , p/D). For j we introduce a discrete Fourier

transform in theyŴ direction ~perpendicular to the stripes!

Ỹm~q,Q!5
1

AN(
j
ym~q, j !ei jDQ ;

ym~q, j !5
1

AN(
Q

Ỹm~q,Q!e2 i jDQ , ~C3!

whereN is the number of cells andQP(2 p/D , p/D) lies
in the first Brillouin zone of the reciprocal lattice of the su-
percrystal. We include in the boundary energy the micro-
scopic line tensiong @see Eq.~2.4!# and the resulting fluc-
tuation Hamiltonian is written

DH5
1

2(q (
Q

Ỹ~q,Q!G̃~q,Q!Ỹ†~q,Q!, ~C4!

where Ỹ(q,Q)5„Ỹ1(q,Q),Ỹ2(q,Q)… is a row vector and
G̃ is a 232 matrix, whose detailed derivation is given in
Appendix D,

G̃~q,Q!5B̃~q,Q!11~gq22B0!, ~C5a!

where

B̃~q,Q!5
2pm2

DD (
k52`

1`

e2~D/D !A~2pk1QD!21~qD!2

3S 1 2e2 if~2pk1QD!

2eif~2pk1QD! 1 D
~C5b!

andB0 is a positive function off, which is written

B05
1

2 (
m,n51

2

B̃mn~0,0!5
4pm2

DD (
k52`

1`

sin2~pkf!e2~D/D ! 2pk.

~C5c!

Using Eqs.~C5! the fluctuation Hamiltonian of Eq.~C4! can
be schematically rewritten as

DH5
1

2(q (
Q

„Ỹ1~q,Q! Ỹ2~q,Q!…

3S G̃1~q,Q! G̃2~q,Q!

G̃2* ~q,Q! G̃1~q,Q!
D S Ỹ1* ~q,Q!

Ỹ2* ~q,Q!
D , ~C6!

where

G̃1~q,Q!5
2pm2

DD (
k52`

1`

e2~D/D !A~2pk1QD!21~qD!21gq2

2B0 , ~C7a!

and

G̃2~q,Q!52
2pm2

DD (
k52`

1`

e2~D/D !A~2pk1QD!21~qD!2

3e2 if~2pk1QD!. ~C7b!

Thus, the problem is reduced to that of pairs of coupled
oscillators. We decouple the oscillators through diagonaliza-
tion of Eq. ~C6!, which yields

DH5
1

2(q (
Q

@ G̃1~q,Q!uỸ1~q,Q!u2

1G̃2~q,Q!uỸ2~q,Q!u2#, ~C8!
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where

G̃6~q,Q!5G̃1~q,Q!6uG̃2~q,Q!u, ~C9a!

Ỹ6~q,Q!5
1

A2
@Ỹ2~q,Q!6eiuỸ1~q,Q!# ~C9b!

and

eiu~q,Q,f!5
G̃2~q,Q!

uG̃2~q,Q!u
; lim

QD→0
u~q,Q,f!5p. ~C9c!

G1 and G2 correspond to the optical and acoustic
branches of the energy spectrum, respectively (G2 vanishes
in the limit qD,QD→0). It is important to note that Eq.
~C9c! implies that in the limitQD→0 the acoustic and op-
tical branches coincide with symmetric and antisymmetric
modes of the stripes, respectively.

This general form of the second-order fluctuation Hamil-
tonian will be further analyzed in order to calculate physical
quantities. However, an important property of the system can
already be extracted from this expression: TheỸ(q,Q) are
not eigenvectors of the system, nor are~with the exception of
theQ50 case! the symmetric and antisymmetric modes of
the stripes„Ỹ1(q,Q)1Ỹ2(q,Q),Ỹ2(q,Q)2Ỹ1(q,Q)…. Thus,
any separate analysis of the only symmetric or antisymmetric
modes neglects their coupling and is only an approximation,
which becomes a good one only at long wavelengths

(Q→0). Infinite wavelength~in the yŴ direction,Q50)
symmetric or antisymmetric modes, for which these modes
do decouple, were considered by several authors@10,16–18#
in the context of stability of the supercrystal. However, these
Q50 modes cost a macroscopic amount of energy, which
makes them improbable, and hence one must consider finite
Q modes in calculating physical quantities.

APPENDIX D: THE KERNEL OF THE GENERAL
FLUCTUATION HAMILTONIAN

In this Appendix we deriveG̃(q,Q), the kernel of the
second-order fluctuation Hamiltonian of the stripe supercrys-
tal, as it appears in Eq.~C4! .

We first expand the perturbations of the boundaries in the
Fourier series,ym(x, j )5 (1/AL) (qym(q, j )e

iqx, and use Eq.
~B5! to rewrite the electrostatic fluctuation energy of Eq.
~C2! as

DEdip5
1

2(q (
i , j

Y~q,i !C~q, j2 i !Y†~q, j !, ~D1!

whereY(q,i )5„y1(q,i ),y2(q,i )… is a row vector andC is a
232 matrix. Note that due to the discrete translational sym-
metry of the supercrystal,C is a function of j2 i and
we denotel[ j2 i . Using the definition ofV(R) in Eq.

~2.1! we introduce the one-dimensional (xŴ direction!
Fourier transform of V(Ax21w2), such that Ṽ(q,w)
[*

2`

1`
duV(Au21w2)eiqu. Using that (p52`

` Ṽ„0,(p

2f)D…5(p52`
` Ṽ„0,(p1f)D… we obtain

C1,1~q,0!5C2,2~q,0!

5
1

2
m2bH (

p52`

`

†@Ṽ„0,~p2f!D…

1Ṽ„0,~p1f!D…#22Ṽ~0,pD!‡

1@Ṽ~q,0!1Ṽ~2q,0!#J ;
C1,1~q,lÞ0!5C2,2~q,lÞ0!5 1

2 m2@Ṽ~q,lD !1Ṽ~2q,lD !#;

C1,2~q,l !52 1
2 m2@Ṽ„q,~ l1f!D…1Ṽ„2q,~ l1f!D…#;

C2,1~q,l !52 1
2 m2@Ṽ„q,~ l2f!D…1Ṽ„2q,~ l2f!D…#.

~D2!

We defineB(q,l ) such that

B1,15B2,25 1
2 m2@Ṽ~q,lD !1Ṽ~2q,lD !#;

B1,25C1,2;

B2,15C2,1, ~D3!

with its discrete Fourier transform

B̃~q,Q!5 (
m52`

`

B~q,m!eimDQ. ~D4!

Using the above definitions Eq.~D2! is rewritten

C~q,l !5B~q,l !21d
l ,0
B0 , ~D5!

whered
l ,r
is the delta of Kronecker,1 is a 232 unit matrix,

andB0 is a positive function off, which was defined in Eq.
~C5c!. We add to the dipolar energy the microscopic short-
range attractions through the line tensiong. Using the nota-
tion of Eq.~D1! the fluctuation energy due to the line tension
is written

DEg5
1

2
g(

q
(
i , j

d
l ,0
q2Y~q,i !Y†~q, j !, ~D6!

where againl[ j2 i . Using Eqs.~D1! and~D6! we obtain the
total fluctuation Hamiltonian,

DH5DEdip1DEg5
1

2(q (
i , j

Y~q,i !G~q,l !Y†~q, j !,

~D7!

where using Eqs.~D5! and ~D6! we find

G~q,l !5B~q,l !11d
l ,0

~gq22B0!. ~D8!

Using Eq. ~C3! we represent the boundary perturbations
Y(q,i ) in Eq. ~D7! as a Fourier series inQ space. We trans-
form the summation indices from (i , j ) to (l , j ). Thus we
obtain the full Fourier representation of the fluctuation
Hamiltonian, Eq.~C4!, with the kernel
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G̃~q,Q!5 (
p52`

`

G̃~q,p!eipDQ5B̃~q,Q!11~gq22B0!.

~D9!

We use the method that was developed in Appendix E in
order to extendB̃(q,Q) from B̃(q,0). Using Eq.~D4! and a
Gaussian representation for the potential

V~R!5@R21D2#2 3/252
4

Ap

]

]~D2!
E
0

`

dte2~R21D2!t2,

~D10!

in Eq. ~D3! we obtain

B̃~q,0!5 (
m52`

`

B~q,m!

52
2m2

Ap

]

]~D2!
E

2`

`

du~eiqu1e2 iqu!E
0

`

dtA~ t,u!,

~D11!

whereA(t,u) is a 232 matrix

Ar ,l~ t,u!5~21!r1 l (
m52`

`

expH 2Fu21~2pm

12par ,l !
2S D2p D 21D2G t2J , ~D12!

and ar ,l5( l2r )f. Using the Poisson summation formula,
Eq. ~E5!, for Eq. ~D12! we obtain

Ar ,l~ t,u!5
Ap

D
e2~u21D2!t2~21!r1 l

3 (
k52`

`

expF2S pk

tD D 22 i2pkar ,l G .
~D13!

Introducing Eq.~D13! in Eq. ~D11! we obtain

B̃r ,l~q,0!52
2m2

D
~21!r1 l (

k52`

`

e2 i2pkar ,l

3E
0

`

dt t21
]

]~D2!
@e2D2t2#e2~pk/tD !2

3E
2`

`

du~eiqu1e2 iqu!e2t2u2

5
4Apm2

D
~21!r1 l (

k52`

`

e2 i2pkar ,lE
0

`

dt

3expH 2D2t22
1

4 F S 2pk

D D 21q2G t22J ,
~D14!

which gives after some calculus

B̃r ,l~q,0!5
2pm2

DD
~21!r1 l

3 (
k52`

`

e2 ~D/D !A~2pk!21~qD!2e2 i2pkar ,l.

~D15!

Comparing the definition ofB̃ in Eq. ~D4! with Eq. ~E2!, we
identifyW in our case asQD/2p. @Equations~E2! and~E5!
require the argument to be 2pm, while the argument ofB in
Eqs.~D4! and~D11! ism. We achieve the proper form of the
argument by transformingm→2pm together with
D→ D/2p, as is done in Eq.~D12!.# Using Eq. ~E4! we
substitute k with k1 QD/2p in Eq. ~D15! and extend
B̃(q,Q) from B̃(q,0),

B̃r ,l~q,Q!5
2pm2

DD
~21!r1 l

3 (
k52`

`

e2 ~D/D !A~2pk1QD!21~qD!2

3e2 i ~2pk1QD!ar ,l. ~D16!

Substitutingar ,l5( l2r )f we finally obtain Eq.~C5b!.

APPENDIX E: THE EXTENDED POISSON
SUMMATION FORMULA

In this Appendix we find the relation between the continu-
ous Fourier transformation of a function and the discrete
Fourier transformation of the same function evaluated at dis-
crete points. Consider the continuous functionh(x) with the
Fourier transform

Ĥ~h!5
1

2pE2`

`

dxeihxh~x!;

h~x!5E
2`

`

dhe2 ihxĤ~h!, ~E1!

as well as the same function evaluated at discrete points
x52pm with the discrete Fourier transformation

H̃~W!5 (
m52`

`

ei2pmWh~2pm!. ~E2!

Using the Poisson summation formula, Eq.~E5!, with
h(2pm)5d(h2m) we find

(
k52`

`

d~h2k!5 (
m52`

`

e2 i2pmh. ~E3!

Using this identity together with Eq.~E1!, Eq. ~E2! is rewrit-
ten
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H̃~W!5 (
m52`

`

ei2pmWE
2`

`

dhe2 i2pmhĤ~h!

5E
2`

`

dhĤ~h! (
k52`

`

d~h2W2k!

5 (
k52`

`

Ĥ~k1W!. ~E4!

This equality reduces in the case ofW50 to the Poisson
summation formula~see, for example, Ref.@36#!,

H̃~0!5 (
m52`

1`

h~2pm!5 (
k52`

`

Ĥ~k!. ~E5!

Hence, it is possible to extendH̃(W) from H̃(0) by merely
substitutingk1W for k in the argument ofĤ in the Poisson
summation formula.

APPENDIX F: FLUCTUATION HAMILTONIAN
FOR SYMMETRIC MODES

In this Appendix we calculate the kernelG̃(q,Q) for the
fluctuation Hamiltonian of the symmetric modes,DHs , and
find its long wavelength approximation~i.e., its value in the
limit qD,QD!1).

Our model contains only symmetric modes and therefore
we have only one degree of freedom per cell. Thus, Eq.~C4!
for the full fluctuation Hamiltonian reduces to Eq.~3.1!,

DHs5
1

2(q,Q u ỹ~q,Q!u2G̃~q,Q!, ~F1!

where

G̃~q,Q!5 (
m,n51

2

G̃m,n~q,Q!. ~F2!

Using the definition ofG̃(q,Q) in Eqs.~C5! we obtain

G̃~q,Q!5F̃~q,Q!2F̃~0,0!12gq2, ~F3!

where

F̃~q,Q!5 (
m,n51

2

B̃m,n~q,Q!5
8pm2

DD (
k52`

`

sin2F ~2pk

1QD!
f

2 Ge2~D/D !A~2pk1QD!21~qD!2. ~F4!

Separating the sum in Eq.~F4! we obtain

F̃~q,Q!5F̃0~q,Q!1Z̃~q,Q!1Z̃~q,2Q!, ~F5!

where

F̃0~q,Q!5
8pm2

DD
sin2~ 1

2QDf!e2~D/D !A~QD!21~qD!2

~F6!

is thek50 term and

Z̃~q,Q!5
8pm2

DD (
k51

`

sin2F ~2pk1QD!
f

2 GexpF2
D

D
~2pk

1QD!A11S qD

2pk1QDD 2G . ~F7!

In the long wavelength regimeqD,QD!1, and the expo-
nent in Eq.~F7! can be expanded forqD!2pk1QD, since
uQDu<p andk>1. We thus write

Z̃~q,Q!5Z̃~0,Q!1Z̃2~Q!~qD!21Z̃4~qD!4

1higher order terms. ~F8!

Denotinge5 D/D which is a small parameter, we find

Z̃~0,Q!5
8pm2

DD (
k51

`

sin2F ~2pk1QD!
f

2 Ge2e~2pk1QD!,

~F9!

Z̃2~Q!5
1

2

]2Z̃~q,Q!

]~qD!2
U
q50

52
4pm2

D2 (
k51

` sin2F ~2pk1QD!
f

2 G
2pk1QD

e2e~2pk1QD!,

~F10!

Z̃45
1

24

]4Z̃~q,Q!

]~qD!4
U
q5Q50

5
m2

8p2D2(
k51

`
sin2~pkf!

k3
e2e2pk~11e2pk!. ~F11!

Using Eq.~F8!, Eq. ~F5! becomes

F̃~q,Q!5F̃0~q,Q!1F̃~0,Q!1F̃2~Q!~qD!21F̃4~qD!4

1higher-order terms , ~F12!

where

F̃~0,Q!5Z̃~0,Q!1Z̃~0,2Q!, ~F13!

F̃2~Q!5Z̃2~Q!1Z̃2~2Q!, ~F14!

F̃452Z̃4 . ~F15!

For the calculation ofF̃(0,Q) we represent the sine in Eq.
~F9! in terms of exponents and obtain a geometric series
which sums to
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F̃~0,Q!5
4pm2

DD H 2cosh~eQD!

e2pe21
2

1

2

cos@f~2p1QD!#e2eQD1cos@f~2p2QD!#eeQD22e22pecos~fQD!cosh~eQD!

cosh~2pe!2cos~2pf! J .
~F16!

Noting thatF̃0(0,0)50, we conclude from Eq.~F12! that the
only contribution toF̃(0,0) comes from the termF̃(0,Q). By
expanding their difference ine we find using Eq.~F16!

F̃~0,Q!2F̃~0,0!

5
4pm2

D2 H 22sin2~ 1
2QDf!e21

1F 12p
~QD!212psin2~ 1

2QDf!sin22~pf!

2~QD!cot~pf!sin~QDf!Ge01O~e!J . ~F17!

ExpandingF̃0(q,Q) in e and using Eq.~F6! we find

F̃0~q,Q!5
4pm2

D2 $22sin2~ 1
2QDf!@e21

2A~QD!21~qD!2e01O~e!#%. ~F18!

The e21 term of F̃0(q,Q) is thus canceled by that of Eq.
~F17! when both are introduced in Eq.~F3!. In the long
wavelength approximationQD!1 and we neglect thee0

term of Eq.~F18!, which is third order inqD,QD with re-
spect to thee0 term of Eq. ~F17!, which is of order
(QD)2. Thus, using the definition ofB0 in Eq. ~3.3b!,

B0~f!52@11sinc22~pf!22~pf!cot~pf!#,

we find

F̃0~q,Q!1F̃~0,Q!2F̃~0,0!

5
m2

D2B0~f!~QD!2

1higher order terms ine, qD, and QD. ~F19!

We now consider the fourth-order term. Using Eqs.~F15!,
~F11!, and the definition ofK0 in Eq. ~3.3a!,

K0~f!5
1

4p2(
k51

1`
sin2~pkf!

k3
,

we find

F̃45
m2

D2 @K01O~e!#. ~F20!

Finally, we considerF̃2. Using Eq.~F14! and expanding Eq.
~F10! in QD we find

F̃2~Q!52
4m2

D2 (
k51

`
sin2~pkf!

k
e2e2pk

2~QD!2
8pm2

D2 H (
k51

` F2
f

2

sin~2pkf!

~2pk!2

1
sin2~pkf!

~2pk!3
1

f2

4

cos~2pkf!

~2pk!2 G1O~e!J
1O„~QD!4…. ~F21!

Introducing this result back in Eq.~F12! yields a
(QD)2(qD)2 term which we neglect in this approximation
with respect to the (QD)2 term of Eq.~F19!, and a (qD)2

term. Thus, using Eqs.~F12!, ~F21!, ~F20!, and~F19! in Eq.
~F3! we obtain

G̃~q,Q!5
m2

D2 @B0~f!~QD!21K0~f!~qD!41O~e!#

2
4m2

D2 F (
k51

`
sin2~pkf!

k
e2e2pk2

1

2

g

m2G ~qD!2.

~F22!

As shown in Appendix G the coefficient of (qD)2 ~i.e., the
effective line tension! is zero toO(e) due to the equilibrium
condition. Thus, using Eq.~G7! in Eq. ~F22!, we obtain

G̃~q,Q!5
m2

D2 @B0~f!~QD!21K0~f!~qD!4#

1higher order terms ine,qD, and QD.

~F23!

APPENDIX G: THE EQUILIBRIUM CONDITION
FOR THE STRIPE-PHASE

In this Appendix we derive the equilibrium condition for
the stripe phase in an alternative form to that derived in Sec.
II. This form is compatible with the calculations in Appen-
dix F and we use it to prove the vanishing of effective line
tension for the symmetric modes@see Eq.~F22!#.

We rewrite the free energy density of the stripe phase, Eq.
~2.4!, using the Poisson summation formula and a Gaussian
representation forP. The multipole correction@already men-
tioned after Eq.~A14!# will be introduced at a later stage.

P~R!5 1
2r215 1

2 ~R21D2!2 1/25
1

Ap
E
0

`

dte2~R21D2!t2.

~G1!
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The boundary energy per cell@last term of Eq.~A13!# is

DEcell5m2 (
m52`

` E
2 L/2

L/2 E
2 L/2

L/2

dx1dx2

3$P„A~m1f!2D21~x12x2!
2
…1P„A~m2f!2D21~x12x2!

2
…22P„A~mD!21~x12x2!

2
…%

5 1
2 m2 (

m52`

` E
2L

L

djE
2`

`

dh$P„A~m1f!2D21h2
…1P„A~m2f!2D21h2

…22P„A~mD!21h2
…%

5m2L (
m52`

` E
2`

`

dh$P„A~m1f!2D21h2
…1P„A~m2f!2D21h2

…22P„A~mD!21h2
…%, ~G2!

wherej5x11x2, h5x12x2, and the limits of the integration overh were taken to6` due to the convergence of the integral.
Using Eq.~G1! and the Poisson summation formula Eq.~E5! in Eq. ~G2!, we obtain@in the same manner that Eq.~D15! was
obtained# the energy per unit length

DE5
1

L
DEcell5m2E

2`

`

dh
1

Ap
E
0

`

dt (
m52`

`

e2@~2pm12pf!~D/2p!21h21D2#t21e2@~2pm22pf!~D/2p!21h21D2#t2

22e2@~2pm!2~D/2p!21h21D2#t2

52
4m2

D (
k52`

`

sin2~pkf!E
0

`

dt t21e2D2t22~pk/D !2t22E
2`

`

dh e2t2h2

52
4Apm2

D (
k52`

`

sin2~pkf!E
0

`

dt t22e2D2t22~pk/D !2t22

524m2(
k51

`
sin2~pkf!

k
e2e2pk. ~G3!

The multipole correction@21# is 2m2 per unit length per
boundary to orderO(e0). Having two boundaries per cell
and introducing the microscopic line tensiong the free en-
ergy density is written

D f5
1

D
~DE22m21g!

52
4m2

D F (
k51

`
sin2~pkf!

k
e2e2pk1

1

2G1
2g

D
. ~G4!

In order to obtain the equilibrium condition we minimize
D f with respect toD and find

05
]~D f !

]D
52

D f

D
1

]~D f !

]e

]e

]D
52

D f

D
2
4m

D2 S,

~G5!

where

S52pe(
k51

`

sin2~pkf!e2e2pk

5peF 1

e2pe21
2
1

2

cos~2pf!2e22pe

cosh~2pe!2cos~2pf!G
5 1

2 1O~e2!. ~G6!

The sum was calculated by representing the sine in terms of
exponents, thus obtaining a geometric series which can be
summed exactly. Using Eqs.~G4! and~G6!, the equilibrium
condition, Eq.~G5!, is rewritten to orderO(e0)

4m2

D2 F (
k51

`
sin2~pkf!

k
e2e2pk2

1

2

g

m2G50. ~G7!

Note thate in the argument of the exponent plays a role of a
natural cutoff. The sum in Eq.~G7! diverges in the limit
e→0 and it is therefore necessary to keep a finite value of
e to maintain convergence. This has the result that the equi-
librium quantities depend on the cutoff, as indeed was found
in Eqs.~2.5!.

APPENDIX H: THE KERNEL
FOR THE ANTISYMMETRIC MODES

In this Appendix we calculate the kernelGa(q) for the
fluctuation Hamiltonian of the antisymmetric modes of one
stripe in the supercrystal~see Fig. 4!. The rest of the stripes
are assumed to be at their equilibrium position~i.e., a mean
field approximation!. Without affecting the generality, we
choose the stripe labeled 1 in the zeroth cell. Using the no-
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tation of Eq.~D1! we have

Y~q,iÞ0!5~0,0!; Y~q,0!5y0~q!~21,1!, ~H1!

whereY(q,i ) is a row vector, whose two components are the
i th cell boundary displacements in Fourier space. Thus,
2y0(q) is the Fourier transform of the local change in the
width of the stripe. Equation~D1! is rewritten

DEdip5
1

2(q uy0~q!u2Gd~q!, ~H2a!

where

Gd5C 1,1~q,0!1C 2,2~q,0!2C 1,2~q,0!2C 2,1~q,0!. ~H2b!

An explicit calculation of Ṽ(q,w)[*
2`

`
du(u21w2

1D2)2(3/2)eiqu gives

Ṽ~q,w!1Ṽ~2q,w!5
4q

w8
K1~qw8!;

Ṽ~0,w!5
2

w8
2 , ~H3!

whereK1(x) is the modified Bessel function of order 1. To
O„(D/D)0… we have w85w for w@D and w85D for
w50 @35#. Using Eq.~H3! in the definition ofC m,n in Eq.
~D2!, Eq. ~H2b! is rewritten

Gd5m2H 1

D2(
p51

` F 1

~p2f!2
1

1

~p1f!2
2

2

p2G1
1

D1
2 2

1

D2

1qFK1~qD!

D
1
K1~qD1!

D1
G J . ~H4!

The first two sums are rewritten

(
p51

` F 1

~p2f!2
1

1

~p1f!2G52
d2

df2(
p51

`

lnS 12
f2

p2 D
52

d2

df2 ln@sinc~pf!#

5f22@sinc22~pf!21#.

~H5!

Substituting(
p51

`
p225 p2/6 and Eq.~H5! for the sums in

Eq. ~H4! we find

Gd~q!54m2HD0
22@12 1

3 sin
2~pf!#1q2FK1~qD!

qD
2

1

~qD!2

1
K1~qD1!

qD1
G J , ~H6!

whereD0 is the equilibrium stripe width for surface fraction
f→0. Using Eq.~2.5b!, D0 is defined

D05 lim
f→0

D15Deg/m2
. ~H7!

Adding to the boundary energy the microscopic~short-
ranged! attractions through the line tensiong, we find the
fluctuation Hamiltonian for the antisymmetric modes for one
stripe,

DHa5
1

2(q uy0~q!u2Ga~q!, ~H8!

where

Ga~q!5Gd~q!12gq2

54m2HD0
22@12 1

3 sin
2~pf!#1q2FK1~qD!

qD
2

1

~qD!2

1
K1~qD1!

qD1
1
1

2

g

m2G J . ~H9!
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